

[Latest CV](#)

[Google Scholar](#)

[LinkedIn](#)

EMPLOYMENT

The Chinese University of Hong Kong

Postdoctoral Fellow
Research Assistant

Hong Kong SAR, China

September 2025 – Present
August 2020 – August 2025

Beijing Normal - Hong Kong Baptist University

Assistant Instructor

Zhuhai, Guangdong, China
August 2018 – July 2019

EDUCATION

The Chinese University of Hong Kong

Doctor of Philosophy in Imaging and Interventional Radiology
Master of Science in Information Engineering

Hong Kong SAR, China
August 2021 – August 2025
August 2019 – November 2020

Beijing Normal - Hong Kong Baptist University

Bachelor of Science in Computer Science and Technology

Zhuhai, Guangdong, China
September 2014 – November 2018

PUBLICATIONS

**Co-first authors*

Journal Publications & Pre-Prints

- Li S, Yao Y, **Zhong J**, et al. ERANet: Edge replacement augmentation for semi-supervised meniscus segmentation with prototype consistency alignment and conditional self-training. *Neural Networks*. 2026;196:108337. doi:10.1016/j.neunet.2025.108337
- Khan S, Khawer MA, **Zhong J**, et al. Advancing deep learning based knee cartilage segmentation in MRI: Innovations, challenges and applications. *Osteoarthritis and Cartilage Open*. 2026;8(1):100702. doi:10.1016/j.ocarto.2025.100702
- **Zhong J**, Huang C, Yu Z, et al. Utilizing 3D Fast Spin Echo Anatomical Imaging to Reduce the Number of Contrast Preparations in $T_{1\rho}$. Quantification of Knee Cartilage Using Learning-Based Methods. *Magnetic Resonance in Medicine*. 2025. doi: 10.1002/mrm.70022.
- **Zhong J***, Yao Y*, Xiao F, et al. A systematic automated post-processing approach for quantitative analysis of 3D $T_{1\rho}$ knee MRI. *arXiv*: 2409.12600
- Yao Y, **Zhong J**, Zhang L, et al. CartiMorph: A framework for automated knee articular cartilage morphometrics. *Medical Image Analysis*. 2024 Jan 1;91:103035.
- **Zhong J***, Yao Y*, Cahill DG, et al. Unsupervised domain adaptation for automated knee osteoarthritis phenotype classification. *Quantitative Imaging in Medicine and Surgery*. 2023 Oct 17;13(11):7444–7458.

Conference Publications

- **Zhong J**, Chow JTH, Li KY, et al. 220P Exploring large language model (LLM) for TNM categorizing and re-categorizing nasopharyngeal carcinoma (NPC) from structured text reports. *ESMO Real World Data and Digital Oncology*. 2025;10:100416. doi:10.1016/j.esmorw.2025.100416
- **Zhong J***, Yao Y*, Xiao F, et al. A SYSTEMATIC POST-PROCESSING APPROACH FOR $T_{1\rho}$ IMAGING OF KNEE ARTICULAR CARTILAGE. In: 19th International Workshop on Osteoarthritis Imaging, Cambridge, United Kingdom, July 9 -12, 2025. *Osteoarthritis Imaging* 5 (2025) 100275.
- **Zhong J**, Huang C, Yu Z, et al. Utilization of Clinical Knee MRI to Accelerate Quantitative $T_{1\rho}$ Imaging of Knee. In: *Proceeding of the International Society for Magnetic Resonance in Medicine*. Honolulu, Hawai'i, USA; 2025.
- Shen Q, Wong V, **Zhong J**, et al. Deep learning enabled motion detection in quantitative macromolecule proton

fraction mapping in the liver. In: *Proceeding of the International Society for Magnetic Resonance in Medicine*. Honolulu, Hawai‘i, USA; 2025.

- **Zhong J**, Yao Y, Xiao F, et al. A systematic automated post-processing approach for quantitative analysis of 3D T_{1p} knee MRI. In: *Proceeding of the International Society for Magnetic Resonance in Medicine*. Singapore; 2024.
- **Zhong J**, Yao Y, Cahill DG, et al. Unsupervised Domain Adaptation for Automated Knee Osteoarthritis Phenotype Classification. In: *Proceeding of the International Society for Magnetic Resonance in Medicine*. Toronto, ON, Canada; 2023.
- **Zhong J**, Yao Y, Khan S, et al. Knee Osteoarthritis: Automatic Grading with Deep Learning. In: *Proceeding of the International Society for Magnetic Resonance in Medicine*. London, England, UK; 2022.
- Li S, ..., **Zhong J**, et al. Unsupervised Domain Adaptation via CycleGAN for knee joint Segmentation in MR Images. In: *Proceeding of the International Society for Magnetic Resonance in Medicine*. London, England, UK; 2022.

FUNDINGS

Co-Investigator, *High-resolution 3D bio-anatomical MRI for simultaneous anatomical and compositional knee imaging with automatic post-processing (#14202225)*, General Research Fund, Research Grants Council, Hong Kong SAR Government.

ACADEMIC SERVICES

Reviewer: IEEE Journal of Biomedical and Health Informatics, Osteoarthritis and Cartilage, Scientific Reports, Artificial Intelligence in Medicine, Quantitative Imaging and Medical Surgery.

SKILLS AND ACTIVITIES

Programming: Python (PyTorch, MONAI, Lightning, scikit-learn, pandas, Flask), Java, SQL, JavaScript (Vue.js), Android, Linux, C.

Languages: Cantonese (native), Mandarin Chinese (native), and English (full professional proficiency).